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Abstract

In this paper, axial vibrations of a finite micro-periodic composite rod with uncertain parameters under a moving

random load are investigated. The solution of the problem was found by using the random dynamic influence function and

applying the perturbation method. The average tolerance approach was also used to pass from differential equations with

periodic coefficients to differential equations with constant coefficients. Two types of the moving random load are

considered: a normal stationary or non-stationary process, the continuous load model (CLM), and a random train of

moving forces, the discrete load model (DLM). Finally, a numerical example is provided to demonstrate the algorithm in

the context of a computer implementation. With slight modification, the algorithm for longitudinal vibrations of a rod

could also be applied to the dynamics of periodic beams, plates and shells with random parameters subjected to stochastic

moving loads.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the dynamic response of a structure subjected to moving loads is an interesting and
important problem, with applications in bridges, roadways, railways, runways, missiles, aircraft, various
machines and so on. Different types of structures and girders, such as beams, plates, shells and frames, have
been considered. Different models of moving loads have also been assumed [1–3]. Both deterministic and
stochastic approaches have been presented [4–14]. In most papers, parameters of the structure have been
assumed to be deterministic; only a few papers consider these parameters to be random [15–17]. In these
papers, the vibration of a beam supported on a random subsoil and subjected to moving load was considered.
We have not found papers in which a dynamic response of a structure with uncertain parameters subjected to
moving random loads has been considered. An important problem not considered yet is the dynamic response
of a composite or periodic structure with uncertain parameters subjected to a moving random load. The
problem of the dynamic and static response of a periodic or composite rod or beam in a deterministic
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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approach has been considered, among others [18–21]. In these articles, the effective solutions were found
thanks to the homogenization method. The problem of vibrations of a periodic structure caused by a moving
load has also been considered [22,23].

In the paper, axial vibrations of a finite micro-periodic composite rod with uncertain parameters under a
moving random load are investigated. The solution of the problem was found by using the random dynamic
influence function [24,25] and applying the perturbation method. The average tolerance approach was also
used to pass from differential equations with periodic coefficients to differential equations with constant
coefficients. For applications of the average tolerance approach in dynamics of beams, see Refs. [29,30]. The
tolerance averaging method has several advantages, and may be used as an alternative to the well-known
homogenization method. The homogenization method expands the solution twice; once in terms of the small
parameter and once in terms of the random variables. Thus, we decided to use the tolerance averaging method
to avoid having to apply the perturbation method twice, which would be necessary within the framework of
the homogenization method. Two types of the random moving load are considered, namely a normal
stationary or non-stationary process, the continuous load model (CLM), and a random train of moving
forces, the discrete load model (DLM).
2. General solution

Let us consider the stochastic vibrations of a periodic straight rod of length L with a varying cross-section
and spatially distributed uncertain parameters, excited by a load moving with a constant velocity v as shown in
Fig. 1. The differential equation for the motion of the rod has the form:

�½Kðb;xÞu;xðb;x; tÞ�;x þ cðb;xÞ _uðb;x; tÞ þmðb; xÞ €uðb; x; tÞ ¼ pðx; tÞ, (1)

where u(b, x, t) denotes the axial displacement, K(b, x), m(b, x), c(b, x) are the uncertain axial rod rigidity, mass
of the rod per unit length, damping coefficient, respectively, which are random functions of the spatial
coordinate x, xA[0, L]. It is assumed that the excitation process of the rod is a stochastic load, moving with a
constant velocity. Additionally we assume that the structural and load parameters are independent. The
susbscript x and the superscript dot denote differentiation in space and time, respectively. As a model
l
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E1, ρ1 E2, ρ2

a·l
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Fig. 1. Examples of periodic rods.
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problem, we consider a rod composed of a periodic array of two linearly elastic, homogeneous and isotropic
constituents with perfect interfaces, as illustrated in Fig. 1.

The standard methods of analyzing the rod dynamics are effective only if the coefficients in Eq. (1) are
deterministic and either constant or slowly varing. The quantities K(b, x), c(b, x) and m(b, x) in this study are
modeled as random periodic fields and are rapidly varying l-periodic functions:

Kðb;xÞ ¼ Kðb;xþ lÞ; cðb; xÞ ¼ cðb;xþ lÞ; mðb;xÞ ¼ mðb; xþ lÞ. (2)

The length l is small compared to the length L of the rod (l5L). The random parameters of the rod are
presented as a vector b ¼ [b1, b2, y, br]

T, where the superscript T denotes the transposition operation. It is
assumed that the expected value E[b] and the covariance matrix Cbb ¼ ½covðbi; bjÞ�rxr ¼ E½bbT� � E½b�E½bT� are
known. Possible random rod parameters include: the Young modulus, the damping coefficient and the
dimensions of the rod cross-section. The solution will be found within correlation theory, and therefore exact
knowledge of the probability distributions of these random variables is not required.

We consider two types of stochastic moving loads, namely a normal stationary or non-stationary
process, the CLM, and a random train of moving forces, the DLM. In the first case (CLM) the loading
process has the form p(x,t) ¼ p(x�vt) ¼ p(x). It is assumed that the expected value E[p(x)] and the
covariance function Cpp(x1, x2) are known and x ¼ x�vt. In the second case (DLM) the loading process has
the form:

pðx; tÞ ¼
XNðtÞ
k¼1

Akd½x� vðt� tkÞ�, (3)

where the amplitudes Ak are random variables, which are mutually independent and also independent from
the times tk and their expected values E[Ak] ¼ E[A], E½A2

k� ¼ E½A2� are known, d( � ) denotes the Dirac delta
function. The forces arrive at the beam at random times tk which constitute a Poisson process N(t) with the
parameter l.

The aim of the paper is to find the solution for probabilistic characteristic of the response u(b, x, t)
of the rod. The probabilistic characteristics of the response of the rod are sought in the form of
the first two probabilistic moments, i.e., the expected value and the correlation (covariance) function.
Two difficulties arise in this problem, in that the coefficients in Eq. (1) are both strongly periodic and
random.

When the parameters of Eq. (1) are random, the problem can be solved only if the right-hand side of Eq. (1)
is deterministic. To overcome these difficulties, we introduce the random dynamic moving influence function
(RDMIF) U(b, x, t) which satisfies the following equation:

�ðKðb; xÞU ;xðb;x; tÞÞ;x þ cðb;xÞ _Uðb;x; tÞ þmðb;xÞ €Uðb;x; tÞ ¼ dðx� vtÞ. (4)

Now, the right-hand side of Eq. (4) is deterministic and the response of the rod u(b,x,t) for a stochastic load
process can be expressed, for zero initial conditions for Eq. (1), by the means of RDMIF by the relationship:

uðb;x; tÞ ¼

Z t

0

Uðb;x; t� tÞpðtÞdt. (5)

Thus, in order to determine the probabilistic characteristics of the displacement of the rod, one can apply
the expectancy operator to Eq. (5) and consequently obtain the expected value:

E½uðb;x; tÞ� ¼

Z t

0

E½Uðb;x; t� tÞ�E½pðtÞ�dt (6)

and the covariance of the displacement:

Covuu½x1;x2; t1; t2� ¼

Z t1

0

Z t2

0

E Uðb;x1; t1 � t1ÞUðb;x2; t2 � t2Þ½ �Covpp½t1; t2�dt1 dt2

þ

Z t1i

0

Z t2

0

CovUU ½x1; x2; t1 � t1; t2 � t2�E½pðt1Þ�E½pðt2Þ�dt2 dt2, (7)
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where the covariance of RDIF can be estimated from:

CovUU ½x1;x2; t1; t2� ¼ E½Uðb;x1; t1ÞUðb; x2; t2Þ� � E½Uðb; x1; t1Þ�E½Uðb;x2; t2Þ� (8)

and Covpp(t1,t2) denotes the time covariance of the excitation force.
In the case of a random train of moving forces (Eq. (3)), the response of the rod can be presented in the form

a Duhamel–Stielties integral, as follows:

uðb; x; tÞ ¼

Z t

0

AðtÞUðb;x; t� tÞdNðtÞ, (9)

where dN(t) is the increment of the Poisson process in time (t, t+dt).
Taking into account the following properties:

E½dNkðtÞ� ¼ ldt for k ¼ 1; 2; . . .

E½dNðt1ÞdNðt2Þ� ¼ l2 dt1 dt2 for t1at2, (10)

one obtains the probabilistic characteristics of the response:

E½uðx; tÞ� ¼ lE½A�

Z t

0

E½Uðb;x; t� tÞ�dt

Covuu½x1;x2; t1; t2� ¼ lE½A2�

Z tmin

0

E Uðb;x1; t1 � tÞUðb; x2; t2 � tÞ½ �dt

þ l2E2½A�

Z t1

0

Z t2

0

CovUU ½x1;x2; t1 � t1; t2 � t2�dt1 dt2, (11)

where tmin ¼ min(t1, t2).
Accordingly, we have obtained the formulas for second-order probabilistic moments of the displace-

ment of the rod. The randomness of the rod parameters is accounted for in the RDMIF U(b, x, t),
which depends on the uncertain parameter vector b. The integrals in Eqs. (6), (7) and (11) may be solved using
a numerical procedure. Here, another difficulty arises in the determination of the expected values and the
second moment (covariance) of the RDMIF which are in Eqs. (6), (7) and (11). This will be addressed
presently.

3. The tolerance averaging approximation method

It is difficult to find the solution to Eq. (4) as the coefficients are strongly periodic. Thus, we solve
Eq. (4) based on the tolerance-averaged model [26–28]. Using this procedure it is possible to transform
Eq. (4) to the form of a system of averaged differential equations with constant coefficients. This
approximation describes the effect of the structural length parameter of the rod. We define O ¼ (0,L),
D(x) ¼ (x�(l/2), x+(l/2)), l5L, xAO0, ¼ {xAO0: D(x)CO}. The periodic functions will be averaged by
means of the formula

gðx; tÞ
� �

¼
1

l

Z xþðl=2Þ

x�ðl=2Þ
gðx; tÞdx; x 2 O0 (12)

where g(x, t) is an arbitrary function defined on O ¼ (0, L).
We base on conformability assumption [26–28] that the function U(b, x, t) conforms to the l-periodic

structure of the rod, and together with all its derivatives has to be periodic-like. Let us introduce the following
decomposition of this function:

Uðb;x; tÞ ¼W ðb; x; tÞ þ V ðb; x; tÞ, (13)

where W(b, x, t) is the averaged part of the function U(b, x, t) and V(b, x, t) will be referred to as the
fluctuating part of the function U(b, x, t).

The modeling decomposition Eq. (13) makes it possible to introduce two kinds of basic unknowns, namely
function W(b, x, t), which is a slowly varying function, and V(b, x, t), which is an oscillating l-periodic-like function.
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Using the Galerkin approximation we obtain the fluctuating function in the form:

V ðb; x; tÞ ¼ gAðxÞvAðb;x; tÞ (14)

(the summation convention over A ¼ 1, 2, y holds), where gA(x) are a priori known oscillating l-periodic-like
functions and the new unknown amplitudes vA(b, x, t) are sufficiently regular and slowly varying functions.

The functions should satisfy conditions

gAðxÞ
� �

¼
1

l

Z xþðl=2Þ

x�ðl=2Þ
gAðxÞdx ¼ 0 (15)

and

mðb;xÞgAðxÞ
� �

¼
1

l

Z xþðl=2Þ

x�ðl=2Þ
mðb;xÞgAðxÞdx ¼ 0. (16)

Using the decomposition of Eqs. (13) and (14), taking into account the tolerance averaging approximation
[26–28], and applying some further manipulations, we obtain the following system of N+1 equations with
constant coefficients for unknown functions W(b, x, t) and vA(b, x, t), for xAO0

� Kðb;xÞ
� �

W ;xxðb;x; tÞ � Kðb; xÞgA
;xðxÞ

D E
vA
;xðb;x; tÞ þ cðb;xÞ

� �
_W ðb; x; tÞ

þ mðb;xÞ
� �

€W ðb; x; tÞ ¼ dðx� vtÞ,

þ Kðb; xÞgB
;xðxÞ

D E
W ;xðb;x; tÞ þ Kðb; xÞgB

;xðxÞg
A
;xðxÞ

D E
vAðb;x; tÞ

þ cðb; xÞgBðxÞgAðxÞ
� �

_vAðb;x; tÞ þ mðb;xÞgBðxÞgAðxÞ
� �

€vA
ðb;x; tÞ ¼ 0, (17)

where A, B ¼ 1, 2, y, N.
It has been assumed that the damping coefficient fulfills c(b, x) ¼ 2am(b, x), where a is constant, and hence

/c(b, x)gA(x)S ¼ 0. The derivation of the rod Eq. (17) is analogous to the derivation of the beam equations
from Ref. [29]. A derivation of Eq. (17) is presented in Appendix A.

The next aim of the paper is to find probabilistic moments of the functions W(b, x, t) and vA(b, x, t), which
describe the RDMIF U(b, x, t). The coefficients of the system of Eq. (17) are random but the right-hand sides
are deterministic, and thus the perturbation method can be used.

4. Probabilistic characteristic of random dynamic influence function

We expand the random functions K(b, x), c(b, x), m(b, x) and W(b, x, t), vA(b, x, t) into Taylor series around
their expected values

Kðb;xÞ ¼ K0ðxÞ þ
Xr

i¼1

K I
i ðxÞ

~bi þ
1

2

Xr

i¼1

Xr

j¼1

K II
ij ðxÞ

~bi
~bj þ � � � , (18)

cðb;xÞ ¼ c0ðxÞ þ
Xr

i¼1

cIi ðxÞ
~bi þ

1

2

Xr

i¼1

Xr

j¼1

cIIij ðxÞ
~bi
~bj þ � � � , (19)

mðb;xÞ ¼ m0ðxÞ þ
Xr

i¼1

mI
i ðxÞ

~bi þ
1

2

Xr

i¼1

Xr

j¼1

mII
ij ðxÞ

~bi
~bj þ � � � , (20)

W ðb;x; tÞ ¼W 0ðx; tÞ þ
Xr

i¼1

W I
i ðx; tÞ

~bi þ
1

2

Xr

i¼1

Xr

j¼1

W ;
ijðx; tÞ

~bi
~bj þ � � � (21)

vAðb;x; tÞ ¼ vA0ðx; tÞ þ
Xr

i¼1

vAI
i ðx; tÞ

~bi þ
1

2

Xr

i¼1

Xr

j¼1

vAII
ij ðx; tÞ

~bi
~bj þ � � � , (22)
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where

~bi ¼ bi � E½bi� ¼ bi � b̄i; E½ ~bi� ¼ 0; K0ðxÞ ¼ Kðb;xÞ; c0ðxÞ ¼ cðb; xÞ; m0ðxÞ ¼ mðb;xÞ,

W 0ðx; tÞ ¼W ðb;x; tÞ; vA0ðx; tÞ ¼ vAðb;x; tÞ,

K I
i ðxÞ ¼

qKðb;xÞ

qbi

����
b¼b

; cIi ðxÞ ¼
qcðb;xÞ

qbi

����
b¼b

; mI
i ðxÞ ¼

qmðb;xÞ

qbi

����
b¼b

,

W I
i ðx; tÞ ¼

qW ðb;x; tÞ

qbi

����
b¼b

; vAI
i ðx; tÞ ¼

qvAðb;x; tÞ

qbi

����
b¼b

,

K II
ij ðxÞ ¼

q2Kðb;xÞ
qbi qbj

����
b¼b

; cIIij ðxÞ ¼
q2cðb;xÞ
qbi qbj

����
b¼b

; mII
ij ðxÞ ¼

q2mðb; xÞ

qbi qbj

����
b¼b

,

W II
ij ðx; tÞ ¼

q2W ðb;x; tÞ
qbi qbj

����
b¼b

; vAII
ij ðx; tÞ ¼

q2vAðb;x; tÞ

qbi qbj

����
b¼b

.

The unknown functions are: W0(x, t), Wi
I(x, t), Wij

II(x, t) and vA0(x, t), vi
A0(x, t), vij

AII(x, t). After
substituting Eqs. (18)–(22) into Eq. (17) and grouping with respect to ~bi one obtains a recurrence set of
differential equations with constant coefficients:
�
 zeroth-order equations

� K0ðxÞ
� �

W 0
;xxðx; tÞ � K0ðxÞgA

;xðxÞ
D E

vA0
;x ðx; tÞ þ c0ðxÞ

� �
_W
0
ðx; tÞ

þ m0ðxÞ
� �

€W
0
ðx; tÞ ¼ dðx� vtÞ,

K0ðxÞgB
;xðxÞ

D E
W 0

;xðx; tÞ þ K0ðxÞgB
;xðxÞg

A
;xðxÞ

D E
vA0ðx; tÞ

þ c0ðxÞgBðxÞgAðxÞ
� �

_vA0ðx; tÞ þ m0ðxÞgBðxÞgAðxÞ
� �

€vA0
ðx; tÞ ¼ 0. (23)
�
 first-order equations (for i ¼ 1,2,y, r)

� K0ðxÞ
� �

W I
i;xxðx; tÞ þ K0ðxÞgA

;xðxÞ
D E

vAI
i;xðx; tÞ

þ c0ðxÞ
� �

_W
I

i ðx; tÞ þ m0ðxÞ
� �

€W
I

i ðxÞ ¼ K I
i ðxÞ

� �
W 0

;xxðx; tÞ

þ K I
i ðxÞg

A
;xðxÞ

D E
vA0
;x ðx; tÞ � cIi ðxÞ

� �
_W
0
ðx; tÞ � mI

i ðxÞ
� �

€W
0
ðx; tÞ,

K0ðxÞgB
;xðxÞ

D E
W I

i;xðx; tÞ þ K0ðxÞgB
;xðxÞg

A
;xðxÞ

D E
vAI

i ðx; tÞ

þ c0ðxÞgBðxÞgAðxÞ
� �

_vAI
i ðx; tÞ þ m0ðxÞgBðxÞgAðxÞ

� �
€vAI
i ðx; tÞ

¼ � K I
i ðxÞg

B
;xðxÞ

D E
W 0

;xðx; tÞ � K I
i ðxÞg

A
;xðxÞg

B
;xðxÞ

D E
vA0ðx; tÞ

� cIi ðxÞg
BðxÞgAðxÞ

� �
_vA0ðx; tÞ � mI

i ðxÞg
BðxÞgAðxÞ

� �
€vA0
ðx; tÞ. (24)
�
 second-order equations (for i,j ¼ 1,2,..., r)

� K0ðxÞ
� �

W II
ij;xxðx; tÞ � K0ðxÞgA

;xðxÞ
D E

vAII
ij;x ðx; tÞ

þ c0ðxÞ
� �

_W
II

ij ðx; tÞ þ m0ðxÞ
� �

€W
II

ij ðxÞ

¼ þ K I
i ðxÞ

� �
W I

j;xxðx; tÞ þ K I
j ðxÞ

D E
W I

i;xxðx; tÞ

þ K II
ij ðxÞ

D E
W 0ðx; tÞ þ K I

i ðxÞg
A
;xðxÞ

D E
vAI

j;xðx; tÞ þ K I
j ðxÞg

A
;xðxÞ

D E
vAI

i;xðx; tÞ

þ K II
ij ðxÞg

A
;xðxÞ

D E
vA0
;x ðx; tÞ � cIi ðxÞ

� �
_W
I

j ðx; tÞ � cIj ðxÞ
D E

_W
I

i ðx; tÞ
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� cIIij ðxÞ
D E

_W
0
ðx; tÞ � mI

i ðxÞ
� �

€W
I

j ðx; tÞ � mI
j ðxÞ

D E
€W
I

i ðx; tÞ � mII
ij ðxÞ

D E
€W
0
ðx; tÞ,

K0ðxÞgB
;xðxÞ

D E
W II

ij;xðx; tÞ þ K0ðxÞgB
;xðxÞg

A
;xðxÞ

D E
vAII

ij ðx; tÞ

þ c0ðxÞgBðxÞgAðxÞ
� �

_vAII
ij ðx; tÞ þ m0ðxÞgBðxÞgAðxÞ

� �
€vAII
ij ðx; tÞ

¼ � K I
i ðxÞg

B
;xðxÞ

D E
W I

j;xðx; tÞ � K I
j ðxÞg

B
;xðxÞ

D E
W I

i;xðx; tÞ � K II
ij ðxÞg

B
;xðxÞ

D E
W 0

;xðx; tÞ

� K I
i ðxÞg

B
;xðxÞg

A
;xðxÞ

D E
vAI

j ðx; tÞ � K I
j ðxÞg

B
;xðxÞg

A
;xðxÞ

D E
vAI

i ðx; tÞ

� K II
ij ðxÞg

B
;xðxÞg

A
;xðxÞ

D E
vA0ðx; tÞ � cIi ðxÞg

BðxÞgAðxÞ
� �

_vAI
j ðx; tÞ

� cIj ðxÞg
BðxÞgAðxÞ

D E
_vAI
i ðx; tÞ � cIIij ðxÞg

BðxÞgAðxÞ
D E

_vA0ðx; tÞ

� mI
i ðxÞg

BðxÞgAðxÞ
� �

€vAI
i ðx; tÞ � mI

j ðxÞg
BðxÞgAðxÞ

D E
€vAI
j ðx; tÞ

� mII
ij ðxÞg

BðxÞgAðxÞ
D E

€vA0ðx; tÞ. (25)

In Eq. (25) the symmetries: K II
ij ðxÞ ¼ K II

ji ðxÞ, cIIij ðxÞ ¼ cIIji ðxÞ, mII
ij ðxÞ ¼ mII

ji ðxÞ and W II
ij ðx; tÞ ¼W II

ji ðx; tÞ,
vAII

ij ðx; tÞ ¼ vAII
ji ðx; tÞ were taken into account.

The hierarchical Eqs. (23)–(25) consists of N+1 Eq. (23), r(N+1) Eq. (24) and (1/2)(N+1)r(r+1)
Eq. (25). After solving the hierarchical system of the equations, we obtain from the relationship (13), (14), (21),
(22) the two first probabilistic moments of the random impulse influence function in the following
forms:

E½Uðb;x; tÞ� ¼W 0ðx; tÞ þ
1

2

Xr

i¼1

Xr

j¼1

W II
ij ðx; tÞcovðbi; bjÞ þ � � �

þ gAðxÞ vA0ðx; tÞ þ
1

2

Xr

i¼1

Xr

j¼1

vAII
ij ðx; tÞcovðbi; bjÞ þ � � �

" #
(26)

and

E½Uðb;x1; t1ÞUðb; x2; t2Þ� ¼W 0ðx1; t1ÞW
0ðx2; t2Þ þ

Xr

i¼1

Xr

j¼1

W I
i ðx1; t1ÞW

I
j ðx2; t2Þcovðbi; bjÞ þ � � �

þ gAðx1Þg
Bðx2Þ vA0ðx1; t1Þv

B0ðx2; t2Þ þ
Xr

i¼1

Xr

j¼1

vAI
i ðx1; t1Þv

BI
j ðx2; t2Þcovðbi; bjÞ þ � � �

" #

þW 0ðx1; t1Þg
A0ðx2; t2Þv

A0ðx1; t1Þ þW 0ðx2; t2Þg
B0ðx1; t1Þv

B0ðx2; t2Þ þ � � � , (27)

where covðbi; bjÞ ¼ E½ ~bi; ~bj�.
The perturbation method in which the Taylor series expansion is restricted to two or three

terms is frequently applied in the stochastic finite element method [31,32] and gives a good estimate
of the desired unknown quantities if the variation coefficients of the construction parameters are smaller
than 0.2.
5. Example: numerical results

As a model problem, we consider a composite rod composed of an array of two linearly elastic,
homogeneous, and isotropic constituents with perfect interfaces, as illustrated in Fig. 1c. We assume that the
Young moduli E(x) are random variables and are equal to b1 ¼ E1 on (0, a) and b2 ¼ E2 on (a, l) (r ¼ 2). The
random variables E1 and E2 are assumed to be mutually independent. The cross-section area of the rod is
constant and equal to F. One introduces only one (N ¼ 1) shape function g1(x), which is piecewise linear, as is
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shown in Fig. 3. In the presented example it is assumed that a ¼ l/2. Let us consider only zeroth- and first-
order approximation (Eqs. (23) and (24)):
�
 zeroth-order equations

�
ðĒ1 þ Ē2Þ

ðr1 þ r2Þ
W 0

;xxðx; tÞ �
4ðĒ2 � Ē1Þ

ðr1 þ r2Þ
v10;x ðx; tÞ þ 2a _W

0
ðx; tÞ þ €W

0
ðx; tÞ ¼

2

F ðr1 þ r2Þ
dðx� vtÞ,

12ðĒ2 � Ē1Þ

l2ðr1 þ r2Þ
W 0

;xðx; tÞ þ
48ðĒ1 þ Ē2Þ

l2ðr1 þ r2Þ
v10ðx; tÞ þ 2a_v10ðx; tÞ þ €v10ðx; tÞ ¼ 0. (28)
�
 first-order equations (for i ¼ 1,2)

�
Ē1 þ Ē2

r1 þ r2
W I

i;xxðx; tÞ �
4ðĒ2 � Ē1Þ

ðr1 þ r2Þ
v1Ii;xðx; tÞ þ 2a _W

I

i ðx; tÞ þ €W
I

i ðx; tÞ ¼
1

r1 þ r2
R1iðx; tÞ,

12ðĒ2 � Ē1Þ

l2ðr1 þ r2Þ
W I

i;xðx; tÞ þ
48ðĒ1 þ Ē2Þ

l2ðr1 þ r2Þ
v1Ii ðx; tÞ þ 2a_v1Ii ðx; tÞ þ €v

1I
i ðx; tÞ ¼

1

r1 þ r2
R2iðx; tÞ, (29)

where

R11ðx; tÞ ¼W 0
;xxðx; tÞ � 4v10;x ðx; tÞ; R21ðx; tÞ ¼

12

l2
W 0

;xðx; tÞ �
48

l2
v10ðx; tÞ,

R12ðx; tÞ ¼W 0
;xxðx; tÞ þ 4v10;x ðx; tÞ; R22ðx; tÞ ¼ �

12

l2
W 0

;xðx; tÞ �
48

l2
v10ðx; tÞ.

The bar over a letter denotes the expected value. The symbols r1 and r2 denote mass density.
The boundary conditions for the rod clamped on both edges have the form:

Uðb; 0; tÞ ¼ Uðb;L; tÞ ¼ 0. (30)

We look for solutions of the system of Eqs. (28) and (29) in the form:

W 0ðx; tÞ ¼
X1
n¼1

y0
nðtÞ sin

npx

L
,

v10ðx; tÞ ¼
X1
n¼1

z10n ðtÞ cos
npx

L
(31)

and for i ¼ 1, 2

W I
i ðx; tÞ ¼

X1
n¼1

yI
inðtÞ sin

npx

L
,

v1Ii ðx; tÞ ¼
X1
n¼1

z1Iin ðtÞ cos
npx

L
, (32)

where c̄2 ¼ Ē1 þ Ē2

� ��
r̄1 þ r̄2
� �

is the average velocity of the wave in the rod.

Remark. Notice that in the case of a uniform rod (E1 ¼ E2 ¼ E ¼ b1), r1 ¼ r2 ¼ r and Eqs. (23) and (24) give
rise to the correct system of equations
�
 zeroth-order equation

�
Ē

r
W 0

;xxðx; tÞ þ 2a _W
0
ðx; tÞ þ €W

0
ðx; tÞ ¼

1

Fr
dðx� vtÞ, (33)
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first-order equation
�
�
Ē

r
W I

1;xxðx; tÞ þ 2a _W
I

1ðx; tÞ þ €W
I

1ðx; tÞ ¼
1

r
W 0

;xx. (34)

As an illustrative example related to the formulas derived in the previous sections, let us examine the
probabilistic characteristics of a RDMIF for a composite rod consisting of periodic segments, each consisting
of two alternating materials. The mass densities are taken as deterministic parameters given by r̄1 ¼
7000 kg=m3 and r̄2 ¼ 6000 kg=m3. The moduli of elasticity are assumed to be random variables with the mean
values Ē1 ¼ 12� 1010 Pa and Ē2 ¼ 12� 109 Pa. The length of the rod is equal to L ¼ 1m and the length of the
segment is l ¼ 0.1m which results in 10 segments along the length of the rod. Cross-sectional area of the beam
is taken as F ¼ 0.0001m2. The considered composite rod under the moving force is shown in Fig. 2. In Fig. 3,
one representative segment of the rod and the shape function taken for the numerical calculations are
presented.
0.5a ·l 0.5a ·l

E1 ρ1 E2 ρ2

ll

-l

Fig. 3. The shape function for the considered composite periodic rod.
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. 4. Probabilistic characteristics of RDMIF U of the rod—the expected value E[U] on (a) and the standard deviation s[U] on (b) for

ee coefficients of variation, namely 1% (dotted line), 5% (dashed line), and 10% (solid line) at the time instant 0.5L/v. The gray line was

tained by the method of many realizations.

10xl=L

P=1
v

U

Fig. 2. The considered composite rod under a moving force.
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Let U denote the RDMIF. The expected value (in Fig. 4a) and the standard deviation (in Fig. 4b) of U for
the three values of the coefficient of variation of the elasticity moduli E1 and E2, namely for 1%, 5% and 10%
at the time t ¼ 0.5(L/v) were calculated. The velocity of the load is equal to v ¼ 0:1c̄. The results obtained
using the perturbation method have been verified by the method of many realizations. The Young moduli E1

and E2 have been assumed to be random variables with a uniform distribution and variation coefficient equal
to 0.1. The differences from the expected value E[U] for both methods are less then 0.1% and charts for both
methods in Fig. 4a are indistinguishable. Some differences are present on the charts for variance, but these are
less than 2%.

Figs. 5a and b show the expected value and the standard deviation of the displacement U (RDMIF) at the
midpoint of the rod, i.e. x ¼ 0.5L, as a function of time t taken in the range (0, L/v) for the three different
coefficients of variation. The velocity of the load is equal to v ¼ 0:1c̄.

In Figs. 6a, b, 7a, b, 8a and b, the expected value and the standard the deviation of displacement U

(RDMIF) at the midpoint of the rod, i.e. x ¼ 0.5L, as a function of time t taken in the range (0, L/v) are shown
for three different values of the velocity of the moving force, namely 3%, 30% and 90% of the average velocity
c̄ of the wave in the rod (v ¼ 0:03c̄, 0:3c̄ and 0:9c̄). The standard deviation of U is shown for three values of the
coefficient of variation of the moduli of elasticity E1 and E2, namely for 1%, 5% and 10%.
Fig. 5. Probabilistic characteristics of RDMIF U at the midpoint of the rod (0.5L)—the expected value E[U] on (a) and the standard

deviation s[U] on (b) for three coefficients of variation, namely 1% (dotted line), 5% (dashed line), and 10% (solid line) as a function of

time 0otoL/v.

Fig. 6. Probabilistic characteristics of RDMIF U at the midpoint of the rod (0.5L)—the expected value E[U] on (a) and the standard

deviation s[U] on (b) as the result of a force moving with the velocity equal to v ¼ 0:03c̄ for three c.o.v., namely 1% (dotted line), 5%

(dashed line), and 10% (solid line) as the function of time 0otoL/v.
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Fig. 8. Probabilistic characteristics of RDMIF U at the midpoint of the rod (0.5L)—the expected value E[U] on (a) and the standard

deviation s[U] on (b) as the result of a force moving with the velocity equal to v ¼ 0:9c̄ for three c.o.v., namely 1% (dotted line), 5%

(dashed line), and 10% (solid line) as a function of time 0otoL/v.

Fig. 7. Probabilistic characteristics of RDMIF U at the midpoint of the rod (0.5L)—the expected value E[U] on (a) and the standard

deviation s[U] on (b) as the result of a force moving with the velocity equal to v ¼ 0:3c̄ for three c.o.v., namely 1% (dotted line), 5%

(dashed line), and 10% (solid line) as a function of time 0otoL/v.

Fig. 9. Probabilistic characteristics of RDMIF U at the midpoint of the rod (0.5L)—the expected value E[U] on (a) and the standard

deviation s[U] on (b) for the ratio of mean values E2/E1 ¼ 1 and for three c.o.v.:1% (dotted line), 5% (dashed line), and 10% (continuous

line) as a function of time 0otoL/v.

K. Mazur-Śniady et al. / Journal of Sound and Vibration 320 (2009) 273–288 283
In Figs. 9a, b, 10a and b, the expected value and the standard deviation of the displacement U (RDMIF) at
the midpoint of the rod, i.e. x ¼ 0.5L, as a function of time t taken in the range (0, L/v) are shown for two
different ratios of the mean values of E1 and E2 (E2 ¼ E1 and E2 ¼ 0.01E1). The standard deviation of U is
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shown for three values of the coefficient of variation of the moduli of elasticity E1 and E2, namely for 1%, 5%
and 10%. The velocity of the load is equal to v ¼ 0:3c̄.

Let us consider a composite periodic rod subject to a train of random forces moving with a constant velocity
that constitute a Poisson stochastic process with intensity parameter l. The forces are modeled by random
variables with the probabilistic characteristics E[A] ¼ 1N and the standard deviation s[A] ¼ 0.1N.
The considered composite rod under the train of moving forces is shown in Fig. 11.

In Figs. 12a and b the probabilistic characteristics of the displacement u of the rod at the middle of the rod
for three values of the intensity parameter l of Poisson’s process, namely 0.05[1/s] (dotted line), 0.1[1/s]
(dashed line), 0.5[1/s] (solid line) in time 05L/v are shown. The velocity of the load is equal to v ¼ 0:2c̄.
Fig. 10. Probabilistic characteristics of RDMIF U at the midpoint of the rod (0.5L)—the expected value E[U] on (a) and the standard

deviation s[U] on (b) for the ratio of mean values E2/E1 ¼ 0.01 and for three c.o.v.: 1% (dotted line), 5% (dashed line), and 10% (solid

line) as a function of time 0otoL/v.

10xl=L

v

u

AAAAAAA

Fig. 11. The composite rod under a train of moving forces.

Fig. 12. Probabilistic characteristics of the displacement u of the rod at the midpoint of the rod (0.5L)—the expected value E[u] on (a) and

the variance s2[u] on (b) for three values of the intensity parameter l of Poisson’s process, namely 0.05[1/s] (dotted line), 0.1[1/s] (dashed

line), and 0.5[1/s] (solid line) in time 0otoL/v.



ARTICLE IN PRESS
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In Fig. 13 the probabilistic characteristics of the displacement u of the rod, namely the expected value E[u]
(in Fig. 13a) and the variance s2[u] (in Fig. 13b) for values of the intensity parameter l of Poisson’s process,
namely 0.05[1/s] (dotted line), 0.1[1/s] (dashed line), 0.5[1/s] (solid line) at the time instant 0.5L/v are shown.
The velocity of the load is equal to v ¼ 0:2c̄.

In Fig. 14 displacement U of the rod at the midpoint obtained using FEM (solid line) and average tolerance
approach (dashed line) have been presented for a force moving with a constant velocity for parameters of the
rod assumed to be deterministic. Realizations of the displacement obtained by the above methods are similar,
whereas FEM predicts larger maximal displacements. The effective solution in FEM for 20 segments was
found from the eigentransformation.

The expected values and variances of the rod response when the load process is a stationary ‘‘white noise’’
process (CLM model of the load) are analogous to the results for DLM load model presented in the
Figs. 11–13 up to the other constants describing this process.
Fig. 13. Probabilistic characteristics of the displacement u of the rod—the expected value E[u] on (a) and the variance s2[u] on (b) for three

values of the intensity parameter l of Poisson’s process, namely 0.05[1/s] (dotted line), 0.1[1/s] (dashed line), and 0.5[1/s] (solid line) at the

time instant 0.5L/v.

Fig. 14. Displacement U of the rod at the midpoint obtained using FEM (solid line) and tolerance averaging approach method

(dashed line).
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6. Conclusions

In this paper, axial vibrations of a finite micro-periodic composite rod with uncertain parameters under a
moving random load are investigated. The solution of the problem was found by using the random dynamic
influence function and applying the perturbation method. The average tolerance approach was also used to
pass from differential equations with periodic coefficients to differential equations with constant coefficients.

Two types of moving random load were considered. The presented algorithm contains the general solution
for the mean value and the correlation function of the response of a beam with uncertain parameters loaded by
a moving stochastic load. The algorithm also contains particular solutions which often occur as separate
scientific problems. These include solutions for vibrations of a periodic rod with random parameters caused by
a force moving with a constant velocity, vibrations of a periodic rod with deterministic parameters caused by a
force moving with a constant velocity, and vibrations of a periodic rod with deterministic parameters caused
by a stochastic moving load.
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Appendix A

In this appendix we present a derivation of the equations in (17).
The virtual work principle for longitudinal rod vibrations has the formZ L

0

Nðx; tÞdU ;xðxÞdx ¼

Z L

0

½pðx; tÞ � cðxÞ _Uðx; tÞ �mðxÞ
_ _ _

Uðx; tÞ�dUðxÞdx

�N0dUð0Þ þNLdUðLÞ, (A.1)

where the axial force N(x, t) is given by the formula

Nðx; tÞ ¼ KðxÞU ;xðx; tÞ (A.2)

and p(x, t) ¼ �d(x�vt).
Function U(x, t) is given by Eqs. (13) and (14). Because the functions vA(x, t) are slowly varying in contrast

to the oscillating functions gA(x), it follows that the derivatives with respect to the x variable are given by

U ;xðx; tÞ ¼W ;xðx; tÞ þ gA
;xðxÞv

Aðx; tÞ. (A.3)

By averaging the left-hand side of Eq. (A.1) and taking into account Eqs. (13), (14), (A.2) and (A.3)
we obtainZ L

0

Nðx; tÞdU ;xðxÞdx ¼

Z L

0

KðxÞ W ;xðx; tÞ þ gA
;xðxÞv

Aðx; tÞ
h i

dW ;xðxÞ þ gB
;xðxÞdvBðxÞ

h i
dx

¼
XR�1
k¼0

Z ðkþ1Þl
kl

KðxÞ W ;xðx; tÞ þ gA
;xðxÞv

Aðx; tÞ
h i

dW ;xðxÞ þ gB
;xðxÞdvBðxÞ

h i
dx

¼
XR�1
k¼0

KðklÞ
� �

W ;xðkl; tÞ þ KðklÞgA
;xðklÞvAðkl; tÞ

D Eh i
dW ;xðklÞ þ KðklÞgB

;xðklÞ
D E

W ;xðkl; tÞ
h

þ KðklÞgA
;xðklÞgB

;xðklÞ
D E

vAðklÞ
i
dvB

;xðklÞ

ffi

Z L

0

KðxÞ
� �

W ;xðx; tÞ þ KðxÞgA
;xðxÞv

Aðx; tÞ
D Eh i

dW ;xðxÞ þ KðxÞgB
;xðxÞ

D E
W ;xðx; tÞ

hn
þ KðxÞgA

;xðxÞg
B
;xðxÞ

D E
vA
;xðx; tÞ

i
dvB

;xðxÞ
o
dx. (A.4)
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K. Mazur-Śniady et al. / Journal of Sound and Vibration 320 (2009) 273–288 287
Similarly, way we can average the RHS of Eq. (A.1)Z L

0

pðx; tÞ � cðxÞ _Uðx; tÞ �mðxÞ €Uðx; tÞ
� 	

dUðxÞdx�N0dUð0Þ þNLdUðLÞ

¼

Z L

0

pðx; tÞ � cðxÞ _W ðx; tÞ þ gAðxÞ_nAðx; tÞ
� 	

�mðxÞ €W ðx; tÞ þ gAðxÞ€nA
ðx; tÞ

� 	
 �
dW ðxÞ½

þgBðxÞdnBðxÞ
	
dx�N0 dW ð0Þ þ gBð0ÞdnBð0Þ

� 	
þNL dW ðLÞ þ gBðLÞdnBðLÞ

� 	
¼

Z L

0

pðx; tÞ
� �

� cðxÞ
� �

_W ðx; tÞ � cðxÞgAðxÞ
� �

_nAðx; tÞ � mðxÞ
� �

€W ðx; tÞ
�


� mðxÞgAðxÞ
� �

€nA
ðx; tÞ

	
dW ðxÞ þ pðx; tÞgBðxÞ

� �
� cðxÞgBðxÞ
� �

_W ðx; tÞ
�

� cðxÞgAðxÞgBðxÞ
� �

_nAðx; tÞ � mðxÞgBðxÞ
� �

€W ðx; tÞ

� mðxÞgAðxÞgBðxÞ
� �

€nAðx; tÞ
	
dnBðxÞ

�
dx. (A.5)

After integrating Eq. (A.4) by parts and grouping the terms with respect to the variance in Eq. (A.4)
and (A.5), we obtain finally Eq. (17).

Remark. For simplicity, in the above formulas we skipped the random vector b.
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